Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37
Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50 Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6495 -
📌Промт дня: анализ важности признаков после обучения модели
После того как вы обучили модель (особенно если это ансамблевый метод вроде Random Forest или градиентного бустинга), важно понять, какие признаки влияют на предсказания.
Это помогает: — интерпретировать модель, — упростить её (feature selection), — обнаружить «лишние» или дублирующие признаки.
Промт:
Проанализируй важность признаков обученной модели. Выполни следующие шаги:
— Извлеки и отсортируй признаки по степени важности. — Построй barplot с топ-10 признаками. — Проверь, есть ли признаки с нулевой или близкой к нулю важностью — возможно, их можно удалить. — Если модель поддерживает SHAP / permutation importance — добавь соответствующую визуализацию. — Сформулируй гипотезы: почему те или иные признаки оказались важны? Как это согласуется с предметной областью?
Рекомендованные инструменты: ✅model.feature_importances_ — в sklearn-моделях, XGBoost, LightGBM ✅eli5, shap, sklearn.inspection.permutation_importance — для глубокой интерпретации ✅seaborn.barplot, matplotlib — для наглядных графиков
📌Промт дня: анализ важности признаков после обучения модели
После того как вы обучили модель (особенно если это ансамблевый метод вроде Random Forest или градиентного бустинга), важно понять, какие признаки влияют на предсказания.
Это помогает: — интерпретировать модель, — упростить её (feature selection), — обнаружить «лишние» или дублирующие признаки.
Промт:
Проанализируй важность признаков обученной модели. Выполни следующие шаги:
— Извлеки и отсортируй признаки по степени важности. — Построй barplot с топ-10 признаками. — Проверь, есть ли признаки с нулевой или близкой к нулю важностью — возможно, их можно удалить. — Если модель поддерживает SHAP / permutation importance — добавь соответствующую визуализацию. — Сформулируй гипотезы: почему те или иные признаки оказались важны? Как это согласуется с предметной областью?
Рекомендованные инструменты: ✅model.feature_importances_ — в sklearn-моделях, XGBoost, LightGBM ✅eli5, shap, sklearn.inspection.permutation_importance — для глубокой интерпретации ✅seaborn.barplot, matplotlib — для наглядных графиков
The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.
Telegram and Signal Havens for Right-Wing Extremists
Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from ua